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Duffin and Schaeffer type inequalities related to some ultraspherical polynomials
are established. One of the results obtained reads as follows: Let f be a real
algebraic polynomial of degree at most n, such that | f (\1)|�1 and | f (x)|�

- 1&x2 at the zeros of Tn&1(x). Then max&1�x�1 | f (k)(x)|�T (k)
n (1) for all

k # [1, ..., n]. Moreover, equality holds if and only if f =\Tn . � 1998 Academic Press

1. INTRODUCTION

Answering a question of the prominent Russian chemist D. Mendeleev,
in 1890 A. A. Markov proved that if f (x)=�n

i=0 aixi is a real algebraic
polynomial of degree at most n such that | f (x)|�1 in [&1, 1], then in the
same interval

| f $(x)|�n2.

Two years later, in 1892, A. Markov's younger brother V. A. Markov
(being at that time a student at St. Petersburg University) extended this
result proving the following

Theorem A. If f (x)=�n
i=0 aixi is a real algebraic polynomial of degree

not exceeding n and | f (x)|�1 in [&1, 1], then

max
x # [&1, 1]

| f (k)(x)|�
n2(n2&12) } } } (n2&(k&1)2)

1.3 } } } (2k&1)
=T (k)

n (1) (1.1)

for k=1, ..., n. Equality holds only for f (x)=\Tn(x)=\cos(n arccos x).

Inequalities of the brothers Markov type have been a challenge for many
mathematicians. In 1941 Duffin and Schaeffer [4] strengthened Theorem A
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proving that inequality (1.1) remains true if the requirement | f (x)|�1 in
[&1, 1] is replaced by

| f ('n
j )|�1, j=0, 1, ..., n, (1.2)

where 'n
j =cos( j?�n) are the points of local extrema of Tn(x) in [&1, 1].

In addition, Duffin and Schaeffer showed that (1.1) fails to hold if the con-
ditions (1.2) are replaced by f |E�1, where E is any closed set of points in
[&1, 1] which does not contain all the points ['n

j ]. In fact Duffin and
Schaeffer proved a more general result including inequality for polynomials
in a strip in the complex plane, but this result does not fall in the frame of
this paper. We only mention that their proof involves complex arguments,
in particular the Rouche theorem.

Denote by ?n the class of all real algebraic polynomials of degree not
exceeding n, and by Pn the subset of ?n containing only polynomials with
n distinct real zeros, located in (&1, 1). In our notation Qn will mean a
given algebraic polynomial of exact degree n (we call it majorant), and
& f & :=supx # [&1, 1] | f (x)|. We now formulate our definition for Duffin and
Schaeffer type inequality (DS-inequality).

Duffin and Schaeffer Type Inequality. The polynomial Qn and the
mesh 2=[tj]n

j=0 (&1=t0<t1< } } } <tn=1) are said to admit DS-
inequality if for an arbitrary f # ?n the assumptions | f (tj)|�|Qn(tj)|
( j=0, 1, ..., n) imply the inequalities & f (k)&�&Q (k)

n & for k=1, 2, ..., n (in
some cases we prove this only for k�2 or for k�3).

Note that the inequalities of DS-type do not hold unconditionally. The
validity of such inequalities depends on the choice of the majorant Qn and
on the mesh 2. Actually, to the best of our knowledge, only a few
DS-inequalities of the above mentioned type are hitherto known.

In 1970 P. Tura� n raised the following question (see [10]):

Problem. If f # ?n satisfies the inequalities

| f (x)|�- 1&x2 for &1�x�1, (1.3)

then, how large can & f (k)& be?

This question was answered in [10] for the case k=1, and in [9] (the
general case). The extremal polynomial turned out to be

Qn(x)=(x2&1) Un&2(x), (1.4)

where Um(x)=sin[(m+1) arccos x]�- 1&x2 denotes the m th Chebyshev
polynomial of second kind.
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Subsequently, it was proved by Rahman and Schmeisser [12] that the
polynomial (1.4) remains extremal with respect to & f (k)& in a larger class
of polynomials than those defined by (1.3). Namely, they proved the
following DS-type inequality.

Theorem B. If f is an algebraic polynomial of degree at most n, satis-
fying the inequality

| f (x)|�- 1&x2 at the zeros of (x2&1) Tn&1(x),

then

& f (k)&�Q (k)
n (1) (1.5)

for all k # [2, ..., n] and

& f $&�(n&1) \2
?

log(n&1)+3+=
2
?

(1+o(1)) n log n

as n � �. Further, in (1.5) equality holds only if f (x)=#Qn(x) where |#|=1.

Note that Theorem B is true for complex-valued polynomials.
In a recent paper A. Shadrin [14] turned back to the original idea of

V. Markov��Lagrange interpolation. He presented a simple non-complex
proof of Theorem A under assumptions (1.2). The crucial part for his proof
is

Theorem C. Let q # Pn , and let tj=tj (q) ( j=0, ..., n) be the points of
all local extrema of q in [&1, 1]. Suppose that f # ?n and

| f (tj)|�|q(tj)|, j=0, ..., n.

Then, for every x # [&1, 1] and for k=1,...,n,

| f (k)(x)|�max { |q(k)(x)|, } 1k (x2&1) q(k+1)(x)+xq(k)(x)}=.

Shadrin has conjectured that DS-inequality holds for every Qn # Pn

provided the mesh 2 is taken to contain the points of local extrema of
Qn in [&1, 1], i.e., if 2=[&1] _ [t: Q$n (t)=0] _ [1]. Unfortunately, as
some simple examples show, this conjecture is not true in general.
Nevertheless, using Theorem C, Bojanov and Nikolov [2] proved that
DS-type inequality holds for such a choice of 2 with majorant Qn=P (*)

n

��the ultraspherical polynomial (the polynomial, orthogonal in [&1, 1]
with respect to the weight (1&x2)*&1�2).
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Theorem D. Let tj :=tj (P (*)
n ) ( j=0, ..., n) be the extremal points of P (*)

n

in [&1, 1]. Let f # ?n satisfy

| f (tj)|�|P (*)
n (tj)|, j=0, ..., n.

Then the inequality

& f (k)&�" d k

dxk P (*)
n "

holds for all k # [1, ..., n], if *�0, and for all k # [2, ..., n], if &1�2�*<0.

A very interesting result (though not exactly of DS-type) is established
in [3]. There, inequalities for the norms of the derivatives of polynomials
are found on the basis of a comparison of their corresponding local
extrema.

We prove in this paper some new DS-type inequalities with majorants
Qn as in Theorems B and D. Section 2 contains some preliminary results.
In Section 3 we extend the pointwise inequality given by Theorem C
(Theorems 3.1�3.3). Precisely, starting from a fixed mesh 2 we obtain a
family of polynomials which may serve as majorants in DS-type
inequalities related to 2. In Section 4 we apply this extension to obtain DS-
type inequalities for Qn=P(*)

n with 2=[tj]n
j=0 , t0=&1, tn=1, and

[tj]n&1
1 being the zeros of P (*)

n&1 (Theorems 4.1�4.2). In Section 5 we estab-
lish DS-type inequalities for a similar choice of 2 but for majorants that
vanish at the points &1 and 1 (Theorems 5.1�5.3). Section 6 contains some
comments and remarks.

2. AUXILIARY RESULTS

The following two lemmas belong to V.A. Markov and reveal the very
interesting fact, that if two polynomials have only real simple zeros, which
interlace, then the interlacing property remains valid also for their
derivatives.

Lemma 2.1. Let b1>b2> } } } >bs+1; c1>c2> } } } >cs , and let b1�
c1�b2 } } } �cs�bs+1. Let p(t)=>s

i=1(t&ci) and q(t)=>s+1
i=1(t&bi).

Then for 1�k�s&1 the zeros of p(k)(t): #1>#2> } } } >#s&k and the
zeros of q(k)(t): ;1>;2> } } } >;s+1&k interlace, i.e., satisfy the inequalities

;1>#1>;2> } } } >;s&k>#s&k>;s+1&k .
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Lemma 2.2. Let b1>b2> } } } >bs ; c1>c2> } } } >cs , and let b1�c1�
b2 } } } �cs with bj{cj for at least one j. Let p(t)=>s

i=1 (t&ci) and q(t)=
>s

i=1(t&bi).
Then for 1�k�s&1 the zeros of p(k)(t): #1>#2> } } } >#s&k and the

zeros of q(k)(t): ;1>;2> } } } >;s&k satisfy the inequalities

;1>#1>;2> } } } >;s&k>#s&k .

As is pointed out by Bojanov in [1, p. 39], the assertion of Lemma 2.2
could be regarded also as monotone dependence of the zeros of the
derivative with respect to the zeros of the polynomial. For the proof of
Lemmas 2.1�2.2 the reader may refer to [14] or Rivlin's book [11,
Lemma 2.7.1].

The next lemma summarizes some observations of V.A. Markov con-
cerning the pointwise estimates for derivatives of a polynomial. Its proof
is based on Lemmas 2.1�2.2 and the Lagrange interpolation formula (see,
e.g., [14, Lemma 2]).

Lemma 2.3. Let |
*

# Pn&1 , and let [tj]n
j=0 be the ordered zeros of

|(x)=(x2&1) |
*

(x). Let Qn # ?n satisfy Qn(tj&1) Qn(tj)<0 for j=1, ..., n.
If f is a polynomial of degree at most n satisfying the inequalities

| f (tj)|�|Qn(tj)| for j=0, ..., n, (2.1)

then for every k # [1, ..., n] there exists a set In, k=In, k(|), such that

| f (k)(x)|�|Q(k)
n (x)| for all x # In, k . (2.2)

The set In, k is given by

In, k=[&1, :k
1] _ [;k

1 , :k
2] _ } } } _ [;k

n&k&1 , :k
n&k] _ [;k

n&k , 1], (2.3)

where [:k
j ]n&k

1 and [;k
j ]n&k

1 are the ordered zeros of | (k)
0 and | (k)

n , respec-
tively, and |j(x)=|(x)�(x&tn& j).

Moreover, if equality occurs in (2.2) for some x # In, k , x { :k
i , ;k

i

(i=1, ..., n&k), then f =#Qn , where |#|=1.

Remark 1. The conditions Qn(tj&1) Qn(tj)<0 for j=1, ..., n can be
replaced by the weaker requirement that the zeros [%j]n

1 of Qn interlace
with the zeros of |, i.e., to satisfy the inequalities t0�%1�t1� } } } �
%n�tn . Thus, Qn can be allowed to have a zero at \1, and then | and
f must vanish at this point, too. Moreover, Lemma 2.3 remains true if the
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first and the last intervals in (2.3) are replaced by (&�, :k
1] and

[;k
n&k , �). Denote by Jn, k :=Jn, k(|) the complementery set of In, k(|),

Jn, k=[&1, 1]"In, k=�n&k
j=1 (:k

j , ;k
j ).

By analogy with the notation in [6], we will call In, k and Jn, k Chebyshev
and Zolotarev intervals, respectively. As was mentioned by Shadrin, for
k=n Jn, k=<, and for k=n&1 | f (k)(x)| attains its maximum at x=&1
or x=1, i.e., at a point from In, n&1 . Therefore for k=n&1, n the assump-
tions (2.1) imply & f (k)&�&Q (k)

n & [14, Corollary 4]. For this reason we may
assume in what follows n�3.

Next, we list some properties of the ultraspherical polynomials P (*)
n

which will be needed for the proofs of Theorems 4.1 and 5.1.
Properties:

(i) y=P (*)
n satisfies the differential equation

(1&x2)y"&(2*+1) xy$+n(n+2*)y=0;

(ii) for *>0, &P (*)
n &=|P (*)

n (\1)|;

(iii) (d�dx) P (*)
n (x)=2*P(*+1)

n&1 (x) (*{0);

(iv) (d�dx) P (*)
n+1(x)=x(d�dx) P (*)

n (x)+(n+2*) P (*)
n (x) (*{0);

(v) for *>0 the ultraspherical polynomials obey the representation

P (*)
n (x)= :

n

m=0

an, m(*) Tm(x)

with positive coefficients an, m(*).
Usually, the parameter * is required to satisfy *>&1�2; however in our

theorems we allow also *=&1�2. With respect to this case, we recall that
P (&1�2)

n (x) is equal, apart from a constant factor, to (1&x2)(d�dx) P (1�2)
n&1(x).

The proof of these properties can be found in the book of Szego� [16]
(concerning property (v), the reader can find a more general statement in
[11, p. 158, Remark 1]).

We conclude this section with a lemma, based on property (v).

Lemma 2.4. Let q=P (*)
n , *�0. Then for k=1, 2, ..., n and for every

s�k

"x2&1
s

q(k+1)(x)+xq(k)(x)"=|q (k)(\1)|. (2.4)

For * # [&1�2, 0) equality (2.4) holds for k=2, ..., n.
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Proof. We apply the approach proposed in [2]. Instead of (2.4) we
shall show that for all x # [&1, 1] and for *�0

|(x2&1) q(k+1)(x)+sxq(k)(x)|�sq(k)(1). (2.5)

In the case s=k and q=Tn (i.e., for *=0) (2.5) has already been proved
by Shadrin [14, Lemma 3]. Then, for *>0, we make use of properties (v)
and (ii) to obtain

|(x2&1) q(k+1)(x)+kxq(k)(x)|

= } (x2&1) :
n

m=0

an, m(*) T (k+1)
m (x)+kx :

n

m=0

an, m(*) T (k)
m (x) }

� :
n

m=0

an, m(*) |(x2&1) T (k+1)
m (x)+kxT (k)

m (x)|

� :
n

m=0

an, m(*) kT (k)
m (1)=kq(k)(1),

proving in such a way (2.5) for s=k. For s>k we have

|(x2&1) q(k+1)(x)+sxq (k)(x)|

�|(x2&1) q(k+1)(x)+kxq(k)(x)|+|(s&k) xq(k)(x)|

�kq(k)(1)+(s&k) q(k)(1)=sq (k)(1).

In the last step we have taken into account that, according to (iii) q(k) is
an ultraspherical polynomial, too, and therefore in view of (ii) for
x # [&1, 1] |xq(k)(x)|�q(k)(1).

Finally, for the case * # [&1�2, 0) one can apply the above arguments to
q$(x)=2*P (*+1)

n&1 (x). The proof of lemma is completed. K

Remark 2. In [2] the same reasoning is applied for the proof of
Theorem D, the case *�0, while the proof of the case * # [&1�2, 0) relies
on different arguments. Lemma 2.4 furnishes a short proof of Theorem D
for both cases. Neither in Lemma 2.4 nor in Theorem D is the real situa-
tion known when k=1 and * # [&1�2, 0).

3. POINTWISE INEQUALITIES

The proof of our DS-inequalities is based on some pointwise inequalities,
established in this section. The main result is given in the next theorem.
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Theorem 3.1. Let |
*

# Pn&1 , and let Qn # ?n have n distinct zeros, which
interlace with the zeros of (x2&1) |

*
(x). Let for a k # [1, ..., n] Q (k)

n have
a representation

Q (k)
n (x)=c1 |

*
(k&1)(x)+c2x|

*
(k)(x) (3.1)

with some constants c1 and c2 , such that

c1(c1 &kc2)>0, if 1�k�n&2,

(c1+c2)(c1 &kc2)>0, if k=n&1, (3.2)

c1 , c2 arbitrary, if k=n.

If f # ?n satisfies the inequality

| f (x)|�|Qn(x)| at the zeros of (x2&1) |
*

(x), (3.3)

then for every x # [&1, 1]

| f (k)(x)|�max[ |Q (k)
n (x)|, |Zn, k(x)|],

where

Zn, k(x)=(c1 &kc2) _x2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)&&c2|

*
(k)(x). (3.4)

Proof. We consider first the main case 1�k�n&2. Without loss of
generality we may assume that |

*
has a positive leading coefficient. Denote

|0(x) :=(x+1) |
*

(x), |n(x) :=(x&1) |
*

(x), and let [:k
j ]n&k

j=1 and
[;k

j ]n&k
j=1 be the ordered zeros of | (k)

0 and |(k)
n , respectively. Lemma 2.2

shows that each interval (:k
j , ;k

j ) ( j=1, ..., n&k) contains exactly one zero
of Q (k)

n . Analogously, Lemma 2.1 asserts that the ordered zeros [#k
j ]n&k&1

j=1

of |
*
(k) satisfy #k

j # (;k
j , :k

j+1) ( j=1, ..., n&k&1). Therefore we obtain

sign Q (k)
n (#k

n&k&1)=sign[c1|
*
(k&1)(#k

n&k&1)]=&sign c1 ,

and since Q (k)
n has exactly one zero located to the right from #k

n&k&1 , we
conclude that c1 and the leading coefficient of Qn have the same sign. Then
(3.2) shows that the same sign has the main coefficient in Zn, k . It is easily
seen that

Zn, k(x)&Q (k)
n (x)=

c1&kc2

k
(x&x0) | (k)

0 (x), (3.5)

Zn, k(x)+Q (k)
n (x)=

c1 &kc2

k
(x+x0) | (k)

n (x), (3.6)
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where x0=c1 �(c1&kc2). We therefore have for j=1, ..., n&k

Zn, k(x)={Q (k)
n (x) for x=:k

j ,
&Q (k)

n (x) for x=;k
j .

(3.7)

In particular, the last relation yields

sign Zn, k(;k
j )=&sign Zn, k(:k

j+1) for j=1, ..., n&k&1. (3.8)

Moreover, since

Zn, k(;k
n&k)&Q (k)

n (;k
n&k)=&2Q (k)

n (;k
n&k),

we have

sign[Zn, k&Q (k)
n ](;k

n&k)=&sign c1 . (3.9)

On the other hand,

sign[Zn, k &Q (k)
n ]=sign c1 for sufficiently large x;

therefore x0 is the last zero of Zn, k &Q(k)
n , i.e., x0>;k

n&k . Analogously,
&x0<:k

1 .
Now let f # ?n be an arbitrary polynomial satisfying (3.3), then according

to Lemma 2.3 the k th derivatives of f and Qn satisfy the inequalities

| f (k)(x)|�|Q (k)
n (x)| for all x # In, k . (3.10)

The theorem will be proved if we show that

| f (k)(x)|�|Zn, k(x)| for all x # Jn, k . (3.11)

From (3.7) and (3.10), for j=1, ..., n&k we get

| f (k)(:k
j )|�|Zn, k(:k

j )|, (3.12)

| f (k)(;k
j )|�|Zn, k(;k

j )|. (3.13)

This coupled with (3.8) yields

(Zn, k\ f (k))(;k
j ) } (Zn, k\ f (k))(:k

j+1)�0;

therefore Zn, k\ f (k) has at least one zero in [;k
j , :k

j+1] for j=1, ...,
n&k&1. The same observation applies to the intervals [&x0 , :k

1) and
(;k

n&k , x0]. We show this only for (;k
n&k , x0]; the second case is
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analogous. Since x0 is the last zero of Zn, k&Q (k)
n , we have |Zn, k(x)|�

|Q (k)
n (x)| for x�x0 . On the other hand, |Q (k)

n (x)|�| f (k)(x)| for x�;k
n&k ;

therefore

sign[Zn, k(x)\ f (k)(x)]=sign c1 for x�x0 ,

while

sign[(Zn, k\ f (k))(;k
n&k)]=&sign Q (k)

n (;k
n&k)=&sign c1 ,

whence the desired result holds. Thus, we proved that each of the polyno-
mials Zn, k\ f (k) has at least n&k+1 distinct zeros, located outside the
Zolotarev intervals Jn, k . Since Zn, k\ f (k) are of exact degree n&k+1,
they do not vanish on Jn, k . Then inequality (3.11) holds by virtue of
(3.12)�(3.13). The theorem is proved in the case 1�k�n&2.

When k=n&1, we make use of the fact that the sign of the leading coef-
ficient of Qn is equal to sign[c1+c2]; then (3.2) shows that the same sign
has the leading coefficient of Zn, n&1. Repeating the above reasoning, we
conclude that if f # ?n satisfies (3.3), then each of the polynomials
Zn, n&1\ f (n&1) contains a zero in [&x0 , :n&1

1 ) and a zero in (;n&1
1 , x0];

hence Zn, n&1\f (n&1) do not vanish on Jn, n&1=(:n&1
1 , ;n&1

1 ), and then
(3.12)�(3.13) imply | f (n&1)(x)|�|Zn, n&1(x)| for x # Jn, n&1.

The case k=n is trivial, since, as was mentioned in Remark 1, in this
case | f (n)(x)|�|Q(n)(x)| for all x # (&�, �). K

Our next theorem asserts a condition under which pointwise inequalities
hold for all k # [1, ..., n].

Theorem 3.2. Let q # Pn and let [tj]n&1
j=1 be the zeros of q$, t0 :=&1,

tn :=1. Let Qn(x)=mxq$(x)+q(x), where m is a real parameter such that

m�max { q(&1)
q$(&1)

, &
q(1)
q$(1)= . (3.14)

If f # ?n satisfies the inequalities

| f (tj)|�|Qn(tj)| for j=0, ..., n,

then for all k # [1, ..., n] and for every x # [&1, 1]

| f (k)(x)|�max[ |Q (k)
n (x)|, |Zn, k(x)|],

where

Zn, k(x)=\x2&1
k

&m+ q(k+1)(x)+xq(k)(x). (3.15)
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Proof. We only outline the differences from the proof of Theorem 3.1.
Again, we may regard that the leading coefficient of q is positive. Then we
show that the polynomial Qn has exactly n real zeros, which interlace with
the zeros of |(x)=(x2&1) q$(x). Indeed, under the assumptions of the
theorem, sign q(tj)=(&1)n& j, j=0, ..., n&1; therefore

sign Qn(tj)=(&1)n& j for j=0, ..., n&1, (3.16)

and each of the intervals (tj&1 , tj) ( j=2, ..., n&1) contains a zero of Qn .
Moreover, requirement (3.14) together with (3.16) implies the existence of
two additional zeros of Qn located in [&1, t1) and (tn&1, 1], respectively.
Thus we established the desired interlacing property. In addition, it follows
from (3.16) that Qn has a positive leading coefficient. The same is true for
Zn, k , and it is easily seen that the polynomials Zn, k\Q (k)

n obey the
representations (3.5)�(3.6) with c1 &kc2 replaced by 1 and x0=x0(k)=
1+km. The proof then is completed in the same way as in Theorem 3.1. K

Remark 3. Requirement (3.14) is fulfilled, e.g., if m�0. In the special
case m=0 Theorem 3.2. reproduces Shadrin's Theorem C.

Theorem 3.2 treats the symmetric case only, but applying the same
arguments as above one can extend it as follows

Theorem 3.3. Let q # Pn and let [tj]n&1
j=1 be the zeros of q$, t0 :=&1,

tn :=1. Let Qn(x)=(mx+s) q$(x)+q(x), where m and s are real
parameters such that

m&s�
q(&1)
q$(&1)

, m+s�&
q(1)
q$(1)

.

If f # ?n satisfies the inequalities

| f (tj)|�|Qn(tj)| for j=0, ..., n,

then for all k # [1, ..., n] and for every x # [&1, 1]

| f (k)(x)|�max[ |Q (k)
n (x)|, |Zn, k(x)|],

where

Zn, k(x)=\x2&1
k

&sx&m+ q(k+1)(x)+(x&ks) q(k)(x).
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4. INEQUALITIES OF DUFFIN AND SCHAEFFER TYPE

As an application of Theorem 3.1 we prove in this section a DS-type
inequality where the majorant Qn is the ultraspherical polynomial P (*)

n .

Theorem 4.1. Let [tj]n&1
j=1 be the zeros P (*)

n&1 , t0 :=&1, tn :=1. If f # ?n

satisfies the inequalities

| f (tj)|�|P (*)
n (tj)|, j=0, ..., n,

then

& f (k)&�" d k

dxk P (*)
n " (4.1)

for each k # [1, ..., n], if *�1, for k # [2, ..., n], if * # [0, 1), and for
k # [3, ..., n], if * # (&1�2, 0).

For these values of k and *, in (4.1) equality holds only if f =\P (*)
n .

Proof. Set |
*

:=P (*)
n&1 , Qn :=P (*)

n . Then obviously the zeros of Qn and
(x2&1) |

*
(x) interlace. Moreover, property (iv) and repeated differentia-

tion yield

Q(k)
n (x)=(n+2*+k&2) |

*
(k&1)(x)+x|

*
(k)(x) for k=1, ..., n. (4.2)

For n�3 the constants c1=(n+2*+k&2) and c2=1 satisfy (3.2); there-
fore Theorem 3.1 is applicable and for x # [&1, 1] and k # [1, ..., n] there
holds | f (k)(x)|�max[ |Q (k)

n (x)|, |Zn, k(x)|], where

Zn, k(x)=(n+2*&2) _x2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)&&|

*
(k)(x). (4.3)

Our goal is to show that &Q (k)
n &�&Zn, k & for all cases of k and *,

postulated in the theorem. Based on property (ii), we find

&Q (k)
n &=(n+2*+k&2) ||

*
(k&1)(1)|+||

*
(k)(1)| (4.4)

for k�1, if *>0, and for k�2, if * # [&1�2, 0).
Next, we apply Lemma 2.4 to obtain

&Zn, k&�(n+2*&2) "x2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)"+&|

*
(k)&

=(n+2*&2) ||
*
(k&1)(1)|+||

*
(k)(1)| (4.5)
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for k�1, if *�1, for k�2, if * # (0, 1), and for k�3, if * # [&1�2, 0). Now
comparison of the right-hand sides of (4.4) and (4.5) asserts the desired
result. Theorem 4.1 is proved for *{0.

The proof of the case *=0 needs a slight modification due to the dif-
ferent normalization of the Chebyshev polynomials of first kind. We put
Qn=(1�n)Tn , |

*
=Tn&1 , and replace the identity (4.2) by

Q (k)
n (x)=

n+k&2
n&1

T (k&1)
n&1 (x)+

1
n&1

xT (k)
n&1(x) (4.6)

to obtain from Theorem 3.1 | f (k)(x)|�max[ |Q (k)
n (x)|, |Zn, k(x)|] with

Zn, k(x)=
n&2
n&1 _

x2&1
k

T (k)
n&1(x)+xT (k&1)

n&1 (x)&&
1

n&1
T (k)

n&1(x) .(4.7)

Applying again Lemma 2.4, we obtain for k�2

&Zn, k&�
n&2
n&1

T (k&1)
n&1 (1)+

1
n&1

T (k)
n&1(1)

�
n+k&2

n&1
T (k&1)

n&1 (1)+
1

n&1
T (k)

n&1(1)=&Q (k)
n &.

Finally, the cases of equality are easily clarified on the basis of Lemma 2.3.
The proof is completed. K

Remark 4. The proposed method of proof does not work in the cases
k=1, * # [0, 1) and k=1, 2, * # [&1�2, 0); therefore the real situation in
these cases is not known. Actually, it turns out that in the special case *=0
inequality (4.1) holds for k=1, too. Since Qn=Tn seems to be the most
important case, we formulate it in a separate theorem.

Theorem 4.2. Let f be a real algebraic polynomial of degree at most n,
satisfying the inequalities

| f (x)|�- 1&x2 at the zeros of Tn&1(x), (4.8)

and

| f (\1)|�1. (4.9)

Then

& f (k)&�T (k)
n (1) for all k # [1, ..., n]. (4.10)

Equality in (4.10) is possible only if f =\Tn .
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Proof of Theorem 4.2. It remains to prove (4.10) for k=1, and we do
this by showing that for

Zn, 1(x)=
1

n&1
[(n&2)[(x2&1) T $n&1(x)+xTn&1(x)]&T $n&1 (x)]

the estimate

|Zn, 1(x)|�&Q$n&=
1
n

&T $n&=n (x # [&1, 1]) (4.11)

is true. For reasons of symmetry we assume x # [0,1]. Consider separately
two cases.

I. The case x # [0, !], where ! will be specified later. Due to the
estimate

|T $n&1(x)|�
n&1

- 1&x2
,

we have

|Zn, 1(x)|<
n&2
n&1

|(x2&1) T $n&1(x)|+
1

n&1
|T $n&1(x)|+1

�h(x) :=(n&2) - 1&x2+
1

- 1&x2
+1.

The function h(x) has in (0, 1) exactly one extremum which is a minimum;
thus on [0, !]

h(x)�max[h(0), h(!)]=max[n, h(!)].

We choose ! # (0, 1) such that h(!)=n, i.e.,

- 1&!2=
1

n&2
;

then

|Zn, 1(x)|�n on [0,!].

II. The case x # [!, 1]. Denote by !0 the last zero of Tn&1 , !0=
cos (?�2(n&1)). For n�4

- 1&!2=
1

n&2
�cos

?
2(n&1)

=- 1&!2
0 ;
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hence !�!0 , and therefore

sign T $n&1(x)=sign Tn&1(x) for x # [!, 1].

This means that on [!, 1]

|Zn, 1(x)|=
1

n&1
|(n&2)(x2&1) T $n&1(x)&T $n&1(x)+(n&2) xTn&1(x)|

�
1

n&1
max[ |(n&2)(x2&1) T $n&1(x)

&T $n&1(x)|, |(n&2) xTn&1(x)|]

and consequently

&Zn, 1(x)&�"n&2
n&1

(1&x2) T $n&1(x)+
1

n&1
T $n&1(x)"

�(n&2) &- 1&x2&+n&1

=(n&2) - 1&!2+n&1=n;

hence (4.11) is proved for n�4. The case n=3 could be verified directly. K

5. DUFFIN�SCHAEFFER�SCHUR TYPE INEQUALITIES

A Duffin�Schaeffer�Schur inequality (DSS-inequality) is any DS-type
inequality, in which the majorant Qn vanishes at the end points t0=&1
and tn=1. The reason is I. Shur's paper [15], where A. Markov's problem
has been examined subject to zero boundary conditions. An example of
DSS-inequality is given by Theorem B. For other results of a similar nature
the reader may consult [5, 13, 2].

In this section we discuss the possibility for derivation of DSS-
inequalities on the basis of the pointwise theorems established in Section 3.
Our starting point will be property (i) of the ultraspherical polynomials.
With q=P (*)

n we have the representation

(x2&1) q"(x)=n(n+2*) _&
2*+1

n(n+2*)
xq$(x)+q(x)& . (5.1)

Clearly, the parameter m=&(2*+1)�n(n+2*) satisfies requirement (3.14)
with equality sign; therefore Theorem 3.2 is applicable to Qn(x)=
(x2&1) q"(x). However, identity (5.1) will be used with respect to
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derivatives of Qn , and this makes possible a formal choice of * #
[&3�2, &1�2]. For this reason we prefer to apply Theorem 3.1 in order to
prove

Theorem 5.1. Let (tj)
n&1
1 be the zeros of q :=P (*)

n&1 , and let t0=&1,
tn=1. Let Qn(x)=(x2&1) q$(x). If f # ?n satisfies the inequalities

| f (tj)|�|Qn(tj)|, j=0, ..., n,

then

& f (k)&�&Q (k)
n & (5.2)

for each k # [2, ..., n], if * # [0, 1�2], and for k # [3, ..., n], if * # (&1�2, 0).
For these values of k and *, in (5.2) equality occurs only if f =\Qn .

Proof. To follow the notations of Theorem 3.1, we set q=|
*

.
Obviously, the zeros of (x2&1) |

*
(x) and Qn(x)=(x2&1) |$

*
(x) interlace

and repeated differentiation in (5.1) yields

Q(k)
n (x)=[n(n+2*&2)+k(1&2*)] |

*
(k&1)(x)+(1&2*) x|

*
(k)(x). (5.3)

The constants c1=c1(k)=n(n+2*&2)+k(1&2*) and c2=1&2* satisfy
requirement (3.2), and we can apply Theorem 3.1 to obtain | f (k)(x)|�
max[ |Q (k)

n (x)|, |Zn, k(x)|] for each k # [1, ..., n] and for every x # [&1, 1],
where

Zn, k(x)=n(n+2*&2) _x2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)&+(2*&1) |

*
(k)(x).

(5.4)

For * # [&1�2, 1�2] and k�2, (5.3) and properties (ii)�(iii) imply

&Q (k)
n &=[n(n+2*&2)+k(1&2*)] ||(k&1)(1)|+(1&2*) ||

*
(k)(1)|. (5.5)

From (5.4) we get

&Zn, k&�n(n+2*&2) "x2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)"+(1&2*)&|

*
(k)&.

Then application of Lemma 2.4 implies

"x
2&1
k

|
*
(k)(x)+x|

*
(k&1)(x)"=||

*
(k&1)(1)|
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for k�2, if * # [0, 1�2], and for k�3, if * # [&1�2, 0). Thus we have for
these values of k and *

&Zn, k&�n(n+2*&2) ||
*
(k&1)(1)|+(1&2*) ||

*
(k)(1)|. (5.6)

The comparison of the right-hand sides of (5.5) and (5.6) shows that
&Zn, k&�&Q (k)

n &. Finally, the cases of equality in (5.2) are described by
Lemma 2.3. The proof is completed. K

Going to the limit * � &1�2 in Theorems 4.1 and 5.1 one can see the
validity of the following DSS-type inequalities.

Theorem 5.2. Let Qn(x)=(1&x2)(d�dx) P (1�2)
n&1(x), and let [tj]n&2

j=0

be the zeros of (1&x2)(d�dx) P (1�2)
n&2(x). If f (x)=(1&x2) q(x) # ?n and q

satisfies

|q(tj)|� } d
dx

P (1�2)
n&1(tj) } for j=0, ..., n&2,

then

& f (k)&�&Q (k)
n & for k # [3, ..., n].

Theorem 5.3. Let Qn(x)=(1&x2) P (1�2)
n&2(x), and let [tj]n&2

j=0 be the
zeros of (1&x2)(d�dx) P (1�2)

n&2(x). If f (x)=(1&x2) q(x) # ?n and q satisfies

|q(tj)|�|P (1�2)
n&2(tj)| for j=0, ..., n&2,

then

& f (k)&�&Q (k)
n & for k # [3, ..., n].

The following is a brief explanation of how Theorems 5.2�5.3 follow from
Theorems 4.1 and 5.1. For *=&1�2, the mesh generating polynomial
becomes |(x)=(1&x2)2 (d�dx) P (1�2)

n&2(x). This means that at the points \1
the restrictions imposed on f have to be modified as follows

| f (\1)|�|Qn(\1)| and | f $(\1)|�|Q$n(\1)|. (5.7)

For *=&1�2 the majorants in Theorems 4.1 and 5.1 are, apart from
constant factors, Qn(x)=(1&x2) (d�dx) P (1�2)

n&1(x) and Qn(x)=(1&x2)
P(1�2)

n&2(x), respectively. Since Qn vanish at \1, f must vanish at these
points, too; therefore f (x)=(1&x2) q(x) for some q # ?n&2. Then the
second inequality in (5.7) is equivalent to |q(\1)|�|(d�dx) P (1�2)

n&1(\1)|
( |q(\1)|�|P (1�2)

n&2(\1)|, respectively). Finally, the comparison of f and Qn
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at the interior zeros of |(x) is replaced by comparison of q(x) and
Qn(x)�(1&x2).

6. CONCLUDING REMARKS

1. The ingenious method of proof proposed by Duffin and Schaeffer
seems hardly applicable for derivation of other DS-type inequalities. The
reason is that this method exploits some special properties of the Chebyshev
polynomial Tn , which are difficult to obtain for other majorants. We hope
that the method described in this paper can be applied for the proof of
further inequalities of DS-type.

2. Let

f (k)(x)rL (k)
n ( f ; x) := :

n

&=0

l (k)
& (x) f (t&) (6.1)

be the Lagrange differentiation formula based on the interpolation points
&1 :=t0<t1< } } } <tn :=1. If the available information [ f� (t&)]n

&=0 is
inaccurate, and the true values [ f (t&)]n

&=0 satisfy

| f (t&)& f� (t&)|�=& (&=0, ..., n),

then the exact upper bound for the roundoff error in (6.1) is given by

Rround
n, k [ f ]= sup

x # [&1, 1] { �
n

&=0

|l (k)
& (x)| =&==: &Q (k)

n (=; } )&,

where Qn(=; } )=Qn(=0 , ..., =n ; } ) is the extremal polynomial in the DS-type
inequality related to 2=[tj]n

j=0 and ==(=0 , =1 , ..., =n). This indicates that
the inequalities of DS-type are also of some practical interest.

3. Concerning DS-inequalities, some questions arise in a natural way.
Such a question is, for a fixed majorant Qn , what is the set of all meshes
2 admitting DS-type inequality? As we already mentioned, the original
DS-inequality fails to hold if in (1.2) some of the points 'n

j are omitted.
However, is it not true that 2=['n

j ]n
j=0 is the unique mesh allowing

DS-type inequality with Qn=Tn . A trivial alternative choice is any n+1-
tuple, containing the zeros of Tn . Theorem 4.2 provides another, non-trivial
mesh. More generally, Theorem D and Theorem 4.1 assert that, for
Qn=P (*)

n DS-inequality holds for two choices of a mesh 2=[tj], namely
for [tj]n&1

1 being the zeros of P (*+1)
n&1 and P (*)

n&1. We conjecture that if *�0,
then DS-inequality holds with Qn=P (*)

n for any choice of [tj]n&1
1 ��the

zeros of P (+)
n&1 with *�+�*+1.
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The converse question is, for a given mesh 2 (i.e., a set of n+1 distinct
points, located in [&1, 1]), what is the class of all majorants Qn at these
points, admitting Duffin and Schaeffer type inequality? Theorems 3.1 and
3.2 give some possible candidates for such majorants. In particular,
Theorem B and Theorem 4.2 show that the polynomials (1&x2) Un&2(x)
and Tn(x) are extremal with respect to the mesh 2 formed by \1 and the
zeros of Tn&1.

4. The special case *=1�2 in Theorem 5.1 corresponds to Theo-
rem D (*=&1�2) (see also [2, Theorem 3.2]), while Theorem 5.1 (*=0)
reproduces Theorem B. Theorem 5.3 is close in spirit to the result in [13,
Theorem 1], where Qn(x)=(1&x2) Tn&2(x) and |(x)=(1&x2)2 T $n&2(x).

5. Lemma 2.4 is the easiest but not the only way for obtaining DS-
type inequalities from those pointwise. To prove extremality of Qn , based
on the pointwise theorems in Section 3, it suffices to show that

&Zn, k&C(Jn, k)�&Q (k)
n &,

and this could be valid even if

&Zn, k&>Zn, k(1), or Zn, k(1)>Q (k)
n (1),

i.e., when Lemma 2.4 is not applicable. In the latter case the observation

|Zn, k(x)|�|Q (k)
n (x)| for x # [;k

n&k , x0]

may turn out to be useful. Namely, one can try to prove that
&Zn, k&C[&x0 , x0]=|Zn, k(x0)| (note that x0<1 in this case).

6. Theorem 3.3 may be applied for derivation of some DS-
inequalities with non-symmetric majorants, e.g., for Qn=P (:, ;)

n ��the Jacobi
orthogonal polynomials. One can also formulate and prove without any
difficulties a nonsymmetric version of Theorem 3.1.

7. Finally note that the inequalities of DS and DSS type in Sections 4
and 5 remain valid for the class of polynomials with complex coefficients.
This follows easily from the fact that the class of polynomials into considera-
tion is invariant with respect to the operations: (i) multiplication by ei%,
% is real; (ii) taking the real part.
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